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The application of the Laplace transformation to the solution of
the lateral and longitudinal skbility equations is presented. The
expressions for the time history of the motion in response to a
sinusoidal control motion we derived for the general case in which
the initial conditions, initial displacements and initial velocities,
ere assumed dMf erent from zero. Same illustrative examples of the
application of the Laplace transform to ordhery Mnesr clifferential
equations with constant coefficients and a numerical example of a
apecific problem are presented in appendixes.

INTRODTETION

Recent developments in piloted and pilotless aircraft, equipped
with automatic devices, have dtiected the attention of engineers to
the theoretical investigateion of dynamic longitudinal and lateral
stability problems of aircraft designed for high+peed and high-
altitude flight. In the yast, the dynamic stability investigations
were usually limited to the detetination of Routh’s condition for
stability and for the calculation of the roots of the characteristic
stability equation to detemnine the damping of the modes of motion
and the period of the oscillation. A more complete analysis of the
problem requires the calculation of a time history of theatiplane
motion in response to a gust disturbance or in response to the
application of the control surfaces. As the methods of classical
analysis (references 1 and 2) proved to be inadequate for this
purpose, new methods of operational mathematics, representing a
more powerful tool, were used. These methods are known today as the
Heaviside operational calculus and the Laplace transformation. The
application of the Heaviside operational calculus to the calculation
of airpla?% motions is discussed in references 3, 4, and 5. However,
the Laplace transformation is considered a more powerful method than
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2 NACA TN 2002

the Heaviside operational calculus because the initial conditions of
the problem, initial displacements and initial velocities, are inher-
ently taken into account by the Laplace transformation, whereas in
ths Heavislde operational calculus, all initial conditions are zero.

In this payer, the Laplace transformation is applied to both the
longitudinal and lateral stability equations for the general case where
the initial displacements and initial velocities were assumed different
from zero. The operational equations obtai~d for this general case
were then solved and the time history of’the motion was obtained by the
Heaviside expansion theorem and by the inversion theorem for.Laplace
transformation. The Laplace transformation is simple and effective.
Its principles en easily understood and its technique quickly learned.
It represents a further development in operational mathematics because
it is a more powerful mathematical tool and because the difficulties
and obscurities oflthe work of Heaviside exe avoided.

A short historical sketch tracing the development of operational
mathematics and ita application to airplane @nsmics is _gmesentedin
appendix A.

The author is indebted to Mr. Leonard Sternfiel&ofthe kngley
Stability Research..Division,NACA, for information and collaboration
he has contribute-din connection with this Taper.
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SYMBOIS

chord, feet-

span, feet

wing area, square feet ,

weight, pounds

density, slugs

airspeed, feet

time, seconds

nondimensional

per cubic foot

per second

time pemmeter

.
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q) nondalensional

3

()
time parameter based on span t ~

Kyo

Kzo

a

()”relative density coefficient based on chord —
;C

()relative density coefficient based on span —
;b

()differential operator with respect to Sc &
c

differential operator with respect to ~b d

()~

operator in Laplace transfmme.tion

root of’stability equation

radius of ~ation about
feet

radius of ~ation about

radius of gyration about
feet

nondimensional radius of

(
lo~itudind aXiS k%

princi~ longitudinal aXh3,

principal lateral axis, feet

@nci@ vertical axis,

gyration about principal

/ )b
nondimensional radius of gyration alout principal

lateral axis (~ojc) ~

nondimensional ratius of gyration about .p?incipal.

ve$tical axis (kZo/b)

angle between principal longitudinal axis of inertia
and flight path (fig. 1), degrees

angle between reference axis end principal longi-
tudinal axis (fig. 1), degrees

angle of attack,(fig. 1), degrees
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flight-path angle between path and horizontal
(fig. 1), degrees

attitude angle between reference line and horizontal
line, degrees (a+ 7’)

deflection angles ofaileron, elevator, and rudder,
degrees

pitching

angle of

angular velocity, radians per second (6)

sideslip, radians

azimuth angle,

yawing angular

angle of bank,

radians

velocity, radians per second ($)

radians

rolding angular velocity, radians per second (~)

increment of forward velocity, feet per second

()nondimensional increnent_af forward velocity ~
v

.

nondimensional radius of.gyration about longitudinal

stability axis
(P

Io2cos2~ +~02sin2q
)

nondimensional radius o&&yra’tion about vertical

(k

,.

stability axis 2cos2q +K%2sin2q
o )

nondimensional productif-inertia perameter

(( )
%02 - %@n ~ co” J

roUing-veloclty perameter (hellx angle generated
by wing tip in roll), radians

pitching-velocity parameter, radians

.

b

.
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Y

z

L

M

Iv

C.L=CZ

Cx

Cz

cm

Cn

yawing-velocity perameter, radians

-c pressure

.rectangular.coordinates(fig. 1)

longitudinal force, pounds (fig. 1)

lateral force, pounds (fig. 1)

normal force, pounds (fig. ~)

rolling moment, foot-pounds (fig. 1)

pitchi,ngmoment, foot-pounds (fig. 1)

yawing moment, foot-pounds

()lift coefficient ‘-
(@

(fig. 1)

()longitudinal-force coefficient ~C@

lateral-force coefficient
.()

&

()
normal-force coefficient ~

(@

()pitching+mment coefficient ~
qsc

,

()

Lrollingaoment coefficient —
qSb

coefficient
()&

.
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f unctIons of P on right side of oper-
ational equatioti

determinants

coefficients in fourth-degree
aquatiom “

characteristic

abbreviated.coefficients in operatIonal
equation

abbreviated functions of P in operational
equation

residue

The subscript o is used to indicate initial conditions, a bar
is used to denote veriables in the operational equations, and a dot is
used to denote differentiationwith respect to time.

ANALYSIS

The purpose of this Taper is to show how the longitudinal and
lateral stability equations can be solved by the Laplace transfomnation.
Thus no attempt is made to present a detailed discussion on the theory
of Laplace transform, which can be found in references 6 and 7 and in the
bibliography presented in appendix I of ref~ence 6, but rather’to
present sufficient background of the theory to permit a clear under-
standing of its application to this particular problem.

If a funct-ion x(t), defined for all p6sitive values of the

‘R and integrated with respect-to tvariable t, is multiplied by e
from zero to infinity, a new function Z(P) ofithe variable P is
obtained; that is

.

.*
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I%(P) = ‘–e–~x(t )dt
Llo

This operation on a function x(t) is called the Laplace transformation
of x(t). The necessary and sufficient conditions for the existence of
the Laplace transform
Let

d%—+al
dtn

represeqt an ordinary
coefficients al, a2,

~, I% for‘or dt

o~erationsl form

(
~n

When t = 0, the

of a function x(t) are discussed in reference 6.

linear differential equation with constant
a,..3 ● ~1> ~. 33? D is substituted

da
~, and so forth, equation (1) can be written
ml’

+alIPL+ . . . ~1*1 + aJx = x(t)

following initial conditions qre assmed:

x= %

.

(1)

in

(la)

The Laplace transformation of equation (la), with the use of the
letter P for the operator, is
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( ,Wlp + %)= = ~(p)

Term .

#+al#-l +... corresponding
t-o

(+ P-1% +*1+... %-2 + %-1) @x

(
+ al P-2% + P*3xl + . . . %2-3 + +2)

~-lx

.. 0..0 ● 0000= . . . . . . ● =** ..*

+ ~_3 (P2k + 91 + X2) 1)3~

D2X+ an_2& + xl)

+ %-1%

The transform Z(P)
some simple Laplace
transfom.s is given

Dx (2)

for x(t) is taken from table I which presents
transforms. A more complete table of Laplace
in appendix III of reference 6 and in appendix A

of reference 7. Appendix B shows two il.lustrative examples of the
application of LapI-acetransform tu ordinary lineer differential
equations with constant coefffcients.

Longitudinal Motion

The nondimensional linearized stability equations for longi-
tudinal motion are given by NACA in the form:

@cDcu~ =

@cDc(cL -

)(
‘1

‘$cxDaDca+ CX6+$CXDCQ
q

( )( )18) = C% be + C%,u: + CZ + $ C%DC a + CZ6 •I-$ CZqDc 9
e a

(3)

+%?”’ +(%+i %+ I
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& The Laplace transformation is demonstrated for the case in which the
elevator motion can be simulated by the sine function

be

where ~ is the amplitude.

=~sinasc (4)

(In most cases ~ i= assumed to be 1.)

Resrrsmging and substituting equation (4) into equation (3) give:

In order to illustrate the use of the La@ace transformation for
a very general case, the only initial condition assumed to be zero
is Eeo = O; that ‘is,the deflection is measured from its trim

position before the maneuver begins. For all other parameters the
initial conditions are assumed to be different fim zero; thus
the Vahes are %*, ao, 8., and ~ at Sc = O. The equatio~ c= --

then be written in general form, in which the four in~tial disturbances
are combined with elevator motion. ~ a specific problem some of the
initial conditions would probably be zero. For practic~ engineer-
purposes, in fact, the most interesting cases

(1) Disturbance only in angle of attack

gust); elevator fixed; aJJ other disturbances

are

~ (due, for example, to a

(zero ~t = e. . ~ = 0)

.

,1‘)
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(2) Change in thrust, thus ~’ # O; elevator fixed; other

disturbances zero (~ = 60 = q. = O)

zero

Each of these assumptions

elevator motion; other disturbances

greatly stiplifies the equations and
shortens the computations, %eca&e ma& terms in
for a general case will vanish.

The Laplace trensformaticm of equation (3a)
follows:

equations developed

can be writtenas

-%’;’ -

=

( )( )&c-$~z#o - @c+$’zqOo

\

(5)

,t!
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u Equation (~) can be expressed in a shorter form as

a31u
J

‘t + a3$ + a338 = G3 -

where

all = 2VCP - Cqt

a12 =,—
(

lC
)

c& + ~ xkP

a13 =

a22 =

%23 =

a31 =

a32 =

a33=

(%)

(6)
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(P2+ aq
F@)

Fr7

q(p}
(P + ia)(P - ia)

g$x$)

= (P + ia)(P - ia)

(’j’a)

(?b)

1as %n+$%c&np + w4fY2(peo + %3)- ~ %&o - ~ hf. (P2+a2)
G3. e

(~ + a2)

gJP)

= (P + ia)(P - ia)
(7C)

Now the system(5)or (5a) represents three .stunil.taneousalgebraic

equations which can be solved for lit,E, and ~ by the method of,
determinants. Thus

A
(8a)

(8b)

—

-,

.
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where the detemhant

all a12 %3

a21 a22 a23 (9)

a31 a32 a33I
The expansion of the determinant ~ results in a quartic equation
in P

.~=~+BP3+CP2+DP+E (lo)

which generally has two pairs of coqd.ex conjugate roots, namely

%,2
.+~ib

P3,4.< &id

Thus

Z=(P+a– ib)(P+a +ib)(P+ c-id) (P+c+ id)

The coefficients of the quartic (equation (10)) ere

A= 2vc%@c - C%)

(lOa)
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c [(=~c%#mq+ %$% - %& + %-J% - %u#c + %#Xu,

Lc
– C%czq - cmMcZ6 -c Elut cx~ - C%t cxq) + 4( ~%tczq

)
2(j

+ ~zmcxqc~l + *CKY
(
Xu:%& – Czulc%

J

D=
[(
~c2 mJxut Czq - %fxut c% - %&xut cz~ + %&xul Cze+ ~cwck

+ %l/zu?cx~ – cxqc~t c% – c~cZut cm~ - czq%@ c% - cZecm~lcX~

+ C%CW c% + C%, %&)+ ‘2~c(%&xui + %&

+ %nJxut - C%c%- CWc%t - c~,%J

,
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The other determinants are

xl =

% 812

G2 a22

‘3 a32

a13

a23

a33

all Gl a13

Z?= an G2 a23

a31 ‘3 a33

A3 =

]3al a32 ‘3

When expanded the determinants can be written

z~ = qfJ’l_(P)- G~12(p) + G3f13(P)

& = ~lfz(p) + G@22(p] - G3f23(p)

13 = qfQ(P) – G2f32(p) + G3f33(p)

(n)

(12)

(13)

(ha)

(12a)

(13a)

.

.
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a21 a23 all %3

fz~= fzz=

a31 ’33 ’31 ’33

aa a22
f3~ = fjz =

a31 ’32

Afterexpmding,therere~t

NACA TN 2002 .

a12 a13
flj =

a22 a23

all a13

f23 =

a21 a23

.

k a12 % ’12
J

931 a32 a= a22

+

+

+
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The other determinants are

xl =

32=
.

b

% %2 %3

G2 a22 a23

‘3 a32 a33

all (1~ a13

aa ‘2 a23

a31 ‘3 a33

all ’12 G1

a21 a22 G2

IaY- ,a32 ‘3

When expanded the determinants can be written

& = qf~~(P) - G2f12(p) + G3f13(p)

~ = ~f=(p) + G@22(p) - G3f23(p)

53 =Glf31(P) – G2f32(P) + G3f33(p)

.

17

(U)

(12)

(11.a)

(12a)

(13a)

.

.
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where the minors fi3(P) are

’22 %?3 %2 *13
fll = fla =

a32 a33 *32 *33

*21 a23 all *13
fz~ = fza =

*31 a33 a31 a33

*21 a22 all a12

f3~ = fjz =

*31 a32 a31 *32

After expanding, there result

NACA TN 2002

II*12 *13
flj =

a22 a23

an a13
F23 =

*21 *23

all *12

F33 =

a21 *22

.

4

9
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●

f~2(P) =
{

4X VCKY2 P3
Da )

+

+

+

(– CZ6C%8 – c

}
Z’U’c%)

(16)

(17)
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f22(P) =
{( )

kllc%yz P3

[( 1
- Pc ~~,Ky2 + ~q P2

[(
&c c

) 1+2%~’-cx~c%’–‘%pcp

f23(P) =
{[ (

)]P2+C Czq + 41Jc

[( ~c ) ~c 1--w@ z Zq + *C + =z#. + /2 Z#xq p

(%– c Czut

}
- %#z*) (19)

(20)

. -.

e

4

—

(21)

.

.
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. f@) = {(Pc 41.1c

[(+Cq, $

- %“@

)c%- 2P’ -

(+ Cxu,c% – c
}

%&a)

2CZJJC b
I– = %c%p

(22)

The solution of equations (&), (8b), and (&), which will result
in a time history of tit,w, and ~, respectively, as a function
of Sc, can be o%tained frcm the Heaviside expansion theorem when there
are simple poles (reference 6). This expansion theorem is em efficient ●

method of findin the inverse Iaplace trsnsfozm of the quotient of two

~. If, for example,polynomials
F(p)

where f(p) an~ F(p) are polynomials with
degree of f(p) is lower than that of F(D).

no commm factors and the
then for the case of’.--,

simple poles enddistinctroots

where An are the linear and distinct roots of F(p) set equal to
zero. The Heaviside expansion theorem is modified as indicated in
reference 6 if any of the roots of F(p) = O sre repeated linear
factors. It is important to note that the expression for the Heaviside
expansion theorem given here is different fram the expression given
in reference 4 because of the different transfoms of functions that
are used in the Heaviside operational calculus and Laplace transfor—
mation. However, if a problem is consistently followed through by
either one of these two operational methods, identical solutions will
be obtained.

The application of’the inversion theorem of Laplace transformation
to the solution of equations (8a), (8b), and (&) by computing residues
is showm in appendix C.
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The ncmdimensional
ere:

Sideslip:

Lateral Motion

linearized NACA standard equations of motion

Yaw:

L.

J

mechanics,

q in a right-

It is tiportqnt to note that from the @andpoint- of

K= should be defined as Km = -(KZ02 - K~2) sin q cos

hand system of axes. However, the definition o~ Km as presented in

the,symbol list-is used in the paper to conform with recen&NACA standard
equations of motion.

The La-placetransformation iS de~~trated for t~ case in which
the control~urf ace motion can he simulated

5 = bm sin asb

by the sine function

(24)

where ~ is the amplitude.(In~St ca~~q % iS aaa~d to be 1=)
Rearranging and substltuting for 5 give:

.
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)+2PbKx2(P@o+Po) - ~ %..#o- ~ Clr$o+ W%@o + ro

%or praoticd engineeringpurposesa stqlifid case is of interest,nemdy
responseto a horizmtd gust I’o,Wile 130= @o = P. = r. = 6 . 0.
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where
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.,

bll = 2~bP- Cyp

.

k )
1 Cypp + CLb12 =--

(
1 cyrPb13= 2PbP-=

)
‘cLtan7

(26)

h~(P)

P2 + a2

hi(p)

(P + ia)(P - ia)
(27a)
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.

h2(P)

‘$ +.2

k(p)
= (P+ ia)(P -ia)

(am)

c%%.+[-*c~@o+2.@=(@o+Po) +W=2(%++-* %@p2+a2)
‘3=

9*a2

h3(P)

‘p2+a2

h3(’P)

= (P+ia)(P -ia)

Now equations (25)or eqtitions (2~a) represent three simultaneous

algebraic equations which will be solved for ~, ~, and ~ by the
method of determinants

(27c)

(28a)

(28b)

Eq__3
A

.

(28c)
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where the determinants ere

bU %2 %3

b21 b22 b23

lb31 b32 b~~

HI %2 b13

%2 ~22 b23

1% b32 b33

%1 % %3

&= b21 ‘* b23

b31 H3 b33

bU %2 =1

b~ b22 %

Ib31 b32 ~

NACA TN 2002 .

.

(29)

(30) .

.

(31)

(32)

If the values of--quations (26)eresubstitutedIntoequdion (29)and
thedetem.uinant~ is exyanded,a quarticequationIs obtained

.

Z=&+ BP3+C3?+DP+I=0 (33)
.
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.

.

which generally has a pair of camplex conjugate roots and.two real
roots

~,2 = - * ib (Dutch-roll oscillation)

P3 = * (spiralmode)

p4 = + (rolling subsidence)

Thus

Z=(P+a– ib)(P+a+ ib)(P+c)(p+d)

The coefficients of equation (33) ere

A = @b3@..~2 - K~2)

27

(33d

.

.
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[

lC
+ ~ Yp (%1.j2r

- “l?cl=.)‘ “i?;c%-Cy.cd

]( }+%$ (CYrc‘p- CYpcz. + % Czp%lly- %ffzl)

/% [(=~ tan 9’Cnpc’p– c’ c
P %)+c‘Pc%

-c~cz’l .
‘l%e development of the dete~ts (30), (31.), =d (32) gives

.

~1 = HIF~(P) - 5%2(P) + H3F13(p) (30a)

& = -HIFZ(P)+ H#22(P)- H3F23(p) (31a)

X3 = HlF3~(P)- %S32(p)+ E3F33(p) (32a)

where the minors are

.
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.

.

(34)

F12(P) = ~[<~(k~b – Cyr) - @Cyp]P3

[(
~ Cy Cnr

‘4P - cYr%’lp)- V’@%’% - ==’. tm 7- Cnp P2j

CL c~r‘T ( )
-cnptan7P (35)

F~(P) = ‘2~b(%%Z$ - ‘=C”P)P2 + +F%c% - C%C4 p
(37)
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[(~c c )+ 2 % ‘f3‘cyrcn~ +

-1-c)$%

1p~bc~p P

}

- CL tan 7 CnP (38)

F23(P)=
1 (
4Vb2K=P3+ pb–~~cyP - cZr)p2

~ c~ Cy
(‘2r~ )

‘cyrczP + kpbcz P -cL tan 7 Cz
$ 1P (39)

F32(P) =
[
4~2KmP3 + ~b(-~~cy~ - Cnp)* + ~@npCYp - cnpcYp)p

- CLC%]
(41)

F33(P) =
[ (
4~%x2P3 - Pb Zx+yp + ~~JP2 +;fY,%p - %,%p)p

1-CLC2P (42)

As indicatid in the section entitled “Longitudinal MotIonn the
solution of equhtlons (28a), (28b), and (2&), which will.result in
a time history of p, ~, and $, respectively, as a function of ‘b>

can be obtained from the Heaviside expension theorem (reference 6)
or by computing residues as shown in appendix C.

.-

.

. .

.

.
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General Remerks

The nmthod presented ~m this paper csn also be ayplied to cases in
which the airplane is equipped with automatic pilots acting on elevator,
rudder, and ailerons. Each automatic pilot is characterized by addi-
tional equations of potion. Thus, generaUy speaking, there we four
stiul.taneousequations for longitudinal motion and five simultaneous
equations for laterel motion (two automatic pilots). As before, the
LapI-acetranqfomuation is applied to these equations and the problem is
treated according to the method indicated in this paper. ‘

Some transforms of simulating functions for control~urface motion
sre presented in appendix D and simplified methods of computation of
Laplace transformation ere given in appendix~.

CONCLUDING REMARKS

The application of the Laplace transf?zmation to the solution
of the lateral and longitudinal stability equations has been presented.
The expression for the time history of the motion in response to a
sirnwoidal control motion were derived for the general case in which
the initial.conditions, initial displacements and initial velocities,
were assumed different from zero.

Ryan Aeronautical Company
Lindbergh Field, San Diego, Calif., July 22, 1949

.
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APPENDIX A

HISTORICAL SKETCH

A short historical sketch on the development of the operational
cal.culm and its application to atiplane dynamics is presented.

The fundamentals for the theory of small oscillations about a
steady state of motion were developed.in 1877 by Routh (references 8
and 9). Then as early as 1903 Bryan applied the mathematical equations
of motion of a rigid body to the disturbed motion of an airplane
(reference 10). b the following years the mathematical theory remahed
fundamentally in the form proposedby Bryan, but the method of appli-
cation was changed as the result o?the development of experimental
research by the NACA.

During those yeers many scientists were working on the problems of
dynamic stabili~, not only in the United States but also in Great
Britain, Rmnce, Belgium, Germany, and other countries. In 192’7the
equations of motion were first expressed in d5meneionl.essform
by Glauert-(referencen). Jones, Bairstow, Z-man, and Mill.ikan
(references, 2, 12, 13, and 14) also dealt witk-dynamic stability
and their work is well-own to the average engineer in this country.

--
The need for a means of describing the response of the system

(mathematicallysimilar to the system used herein) to the applied
disturbance was realized by electrical engineers many yeers ago.
In 1899 &“aviside, tipelled by this need, contributed a significant
development. In his electromagnetic theory he orighally devised
his operational calculus for the solution of ordhary linear differ-
ential equations with constant coefficients and some of the partial
differential equations of applied mathematics. The principles of
this method are illustrated in reference 15.

The significance of Heavisidefs contributionswere not recognized
in his lifetime because of the inadequacy ofithe mathematical tieatment
and the obscurity o~his papers. Bromwich, making use of the theory of
functions of a comp~ex.vsrfable,explained and established the validity
of-Heavisidelsmthode. Bromwich*s method consisted of finding the
solution of a given differential equation, with initial and boundery
conditions, in the form of--acomplex integral.over a suitable path;
the choice of the integrand end contour is sometimes difficult. Further
research by Carson, Carslaw and Jaeger, and Doetsch (references 16
to 18) resulted in the application of the LapMace transformation to
the differential equation. Finally, Doetsch recognized fully the
value of the “inversion theorem” for the Laplace transformation. Thus

.
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the Laplace transfomtion is an important step forward in operational
mathematicss. A complete treatment of the sub~ect of Laplace trans-
formation canbe found in references 6, 7, and 17. For S- t~ ~W
it has been recognized that by applying the Laplace trsnsform a better
substitute for Heaviside operational methods can le obtained.

Among the esrly attempts to apply operational celculus to the
problems of stability and control was a very fundamental work well-
known in this country (reference 4). This paper deals with lateral
motion and applies Heaviside operational calculus. Later several
papers were written on the dynamic response of the aircraft which also
made use of the Heaviside method. Some dealt with tail load variations
due to elevator motion (for example, see reference 19). Others dealt
with stalility with free controls (reference 20), stick forces in
maneuvers (reference 21), and the behavior of the airplane equipped
with automatic control (reference 22).

.

.

.

,.
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APPENDIXB

ILLUSTRATIVEEXME%ES OF APPLICATION OF UI’IAC2

Example I

b

TRANSFORMATION

Example I illustrates the application of Lapl.acetransfom to the
equation

(D2 _ p

The initial conditions when

—

+ 2)x = eat (t <o)

t =0 are

x= %

Dx = xl

Table I (transfom 3) shows that the transform of

x(t) =elat

is

z(p) =—
(p ~ a)

Thus the LapJ-acetransfomnation of the gi~en equation is (n = 2 when
equation (2) is ap@ied)

.

.

(P2-3P+ 2)Y=~+(P~+XI)-3Xo
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Example II
A

I&ample II applies the Ls@ace transform to the equation

(D3-2D2+D)X=4 (t > o)

The initial conditionswhen t = O ere

.

% =1

X1=2

%22=-
.

Table I (transform 1) gives the transform for ●.

x(t) = 4

If the rulee of equation (2) ere applied, the transfomn can be
vcritten(n = 3) as

(P3 -2p2 + p)= =:+ (P2~ + px~ + X2) -2(PXO+ xl) + Xo

=$+( P2+2P–2)–2(P +2)+1

= P3 –5p+4

P

35””

.

.
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APEENDIXc

THE 33WIEIBIONTHEOREM OF LAPLACX TRANSFORMATION

By means of–this theorem x(t) can be obtained from
transfozm Z(P). If

J

m
Z(P) = e-~x(t)dt---– R(p) > ()

o

then

J’
y+im

X(t”)= J=
2ifi

Y(h)eXtdk
y-ire

whsre Y is a constant-greater than the real yert of all
of...X(X) and

..-

..-. —

.

(cl)

Bingulsrlth s

J’
7+im

J

7+iw
= lim

7–icu W*W 7-iw

The path (7- i~, 7 + iCO) mey be replaced %y a circle C containing
all the poles of the integrand. Then x(t) is equal to 2YCI times
the sum o?residues at-these poles. The method of evaluating the
residues is shown at the end of this appendix.

Example I

~t .. ..-

3=
p3+p–4.
p2 – 2E.- 3

.

.
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The inversion
gives

theorem, with ~ substituted for P in the equation,

.
The denominator has two roots –3 and 1.
at two stiple poles at X = 1 and at k
to obtain x.

Example 2

Consider the simult~:us equations

2A –3

!I%eresidues must be evaluated
_3=d and then summd in order

E+(4P+3)y=o

which yield

4P+35=
P(P + 1)(u + 6)

>

Application of the inversion theorem of LapI-acetransformation gives the
solution

1 1’
7+im

4L+3
x =—

2ifi ~-i~ L(A + I)(w + 6)

el.tfi
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The sums of residues on each pole for x and y give the solution as
a’function of Wne.

The inversion theorem for La@ace transformation is now applied
to equations (8a), (8b), and (%). H k is substituted fa P, new ‘
detemuinants A, Al, A2, @ A3 are obtained from ~, X1, ~, and X3.

A time history of U1, a, and e as a function of the parameter EC

is obtained when the inversion theorem is applied to these equations
(the path angle 7 is then also detemnined as 0 = a + 7):

/

‘+i” & ~hca
a ‘k

7-ICO
A

(C2)

(C3)

(C4)

In order to evaluate the integrals (C2), (C3), and (C4), the values of
all residues for each integr~ must be found and summed. This procedure
is demonstrated on equation (C2). The perameter A is substituted
for P, equation (lOa) is substituted for ~, and equation (ha) Is
substituted fcw ~1. The auxiliary substitutions for ~(k), G2(A),

and ~(k) ere obtained’fromequations (Ya), (7b), and (Tc). The

v~ues for ffi(h)s f=~2(k),and f13(k) are obtained from equa-

tions (14), (15), and (16) and k is again substituted for P. Then
equatton (C2) can be written

.

.

/
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1 Lf
-!-h [qmfll(x) - 13.Jm&) + 63(A)f33(k)] e%k

ul. —

~ifi 7_im (A +ia)@-ia)(X +b-ic)(k +b+ l~)(h+a-le)(i.+d+ ie)

The residues R mmt be evaluated for Eix s@le poles: RI at pole at k =-is,

~ at poleat k= ia, R3 at poleat l=~+io,R4 at pole at. h=41-ic,

ILj atpdeat k=~+ig, ~ ~ atp~le~t ~=~-tem ~ ~*=*. ~i~

the use of the relatimm

.

am x =
eix _ e-ix

m

Cos x =
eti + #.x

2

the u: terms canbe collected and erpreaaed aB Bine and cosine terms, as Qkstrated in the

nuxmrlcal example. E any fuwtionotimr than

nmtion, there would be no changea in equations

but t~ e-essfo~ for t~ f~tlo~ G1~ G2j

different. (See appendix.)

the sine function were &ed to

(1.la), (1*), ad (lsa) Qcr

G3 (equations (’i’a),(1%), ~

almulate elevator

El, ~, and XJ

(Tc) ) would be

. .
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IWaericel Example

The roots of the quartic ere

L1,2 = -0.739517 * 11.y535i

k3,4 = -o.0165?32i o.oU@356i

Substituting three values for xl, k2, k3, @ h4 gfVeO

.
1

““G

Ii-l

r+ico &W’ + LbWW + qIL4w3946)ah

pLj. (a + o.739517- lL5635i)(A + 0.739517 + u.56351)(A + 0.016582- 0.04h18@l)(L +0.0165S2+0.044183%0

this example there sre four simple poles. Ftiet the residue

Ll = -0.739517 + u. 56351

is camputed at the pole

Then

ek~s~().lz-t l.kTHL=l + 134.4-6)

‘1 = (Xl + 0.739517+ UL.5635A) (Xl + 0.0165$2- O.d#tl@~i) (xl + 0.016582 + O.044189561)

. . ,



. . *

Substituting the value for Xl in the laat equation yields

El =
ehlac -133.1676468- 17.102~66f + 1.4773122(-O.7z9~7 + U. 5635i,)+ 1z4.4soM46

-3080.2838i + 3W.65737

@’16C(0.23~403 - O.Ol~U.)
=

-3080.28381 + 3%.65737

With the uae of tha algebraic manipulation of complex numbers

Rl=e
Al,c (O. 230yk03 - O.Ol~li) (3080.28381 + 386.65737)

(-3080.28381 -I-386.65737)(3080.28381 + 386.6s737)

. JIEC (o.lyy14a + 0.703047351)
9637.653

. (o.0m1562 + 0.00007Eg4i)e(~ ”739517+UO5635i)Sc

At pole ~ =A.739517- 11.56351 the sign of haglnary part is changed, thus

R 2 = (0.00001562 - 0.00~@i)e(4”739s17-u”*35i) ‘c

At POk A3 .-0.016582+ 0.044Mg~i

L3EIC (A33 -I-1.4773122A3 + u4.4wM46)
R3=e

(X3 -1-0.739517- 11.56351)<h3 + 0.739517 + II.5635i)(A3 + 0.016~24 + o.044M956ij



Substitutf~ for

R3 = ek3Bc

.
X3 yields

[+.0016775 -0.0014655 + 1.47’7322(-.01652 + 0.04418g56i) + 134.4wW46]

11.8173E!41- o.oo56074&?3

Following the am procedure as that used for the l.l root gives

X EC (134.46471 + 0.06381628i)(-U.817384i - 0.00~7h.823)
R3. e3

(u.8173841 - 0.00~k82s) (-11.817384i- 0.0056074823)

X3BC (-omoo13 3316 + 15@ ,02147031)
=9

-139.650596

= (0.0CMXM09~ - u,.jy8g~i)e(a”016%m-w1@56i)SC

At P01c3 X4 =-o.o165.@- 0.0U189561 the sl~of the -nary part ia chimged, thus

% = (o.~96+ u.37855i)e(4.016-”til@56i)sc

. , ,

.P
N
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Now U1 =R1+++R3+R4. Substituting the values for Rl, ~,” R3,

and R4 yields

U’= (0.00001562+ 0.ooM72948i) e(g*739~17+U” ‘35i)sC

+ (0.0000152 – 0.0000y2948i)e““739>17-U” 5635i)sc

(-0.016582+0.04418956i)Sc
+ (0.0000009546– ~.37855i)e

+ (0.0000009546+ n.37855i)e(4*016~24004418956i)sC

-0.739517sc(0.00001562eU.5635isC~t=e + o.~oo1562e-11.5635isC

1L5635iSc_ –UL.5635isc)+ o.000072948ie 0.000072948ie

+ e4.016*2sc(oco~~*~4.0~18956isc

+ O oooooo954&#90~189%isc_ ~037855ieo.04418956isc.

4.04418956isc)+ ~.37855ie

Withtheyseof t% relations

eti_e-ix=2~ s~nx

the m.lue of U1 can be expressed as

~Oyj%lTsC(OoooWjIpA COSU.5635Sc-&.000145896 s~~~5635sc)~t se

+e4”016582sc(0 .000001gOg2Cps0.04-418956sC+22.757~Osin0.W4189Xs C)

The roots must be computed very exactly to several decimals; other-
wise the computation by the method of residues does not check to zero.
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Evaluation of’Residuee

(a) Simple pole:

The residue at a simple pole of the function f(z) is

R= Mm (z-a)f(z)
z 7a

(c6)

(b)Multiple pole:

Let”

g(z) = (z - a)%(z) (C7)

.

—

Then the residue at the pole of nrth order is
.

(c8)

Example 1 (Simple poles).-Let

1 J’
7+iw

x
A3+ h-k=—

2ifi
ekt~

7_im (L2- 2h+2)(k2+ ~-3)

The denominator has four roots. There are four simple poles (m = 1)

at Al = -3, h2 = 1, and k3,4 = 1 A i. The computation of the residue

at a simple pole L .-3 is illustrated. If-the term under the inte-gral
sign is celled f(k)dl.,then according to equation (C!7)

.

g(x) =(x- l)f(k)
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Tbns the residue is

[

(X–l)ob3+A-4)ekt

1
‘= (&a+2)(L-l)(~+Jx s

=-

= (-27– 3- 4)e-3t

(9+ 6 + 2)(-3-1)

EXar@e 2 (Double po10).- I&

x(t) S*
/

7+ica(~ + xl+ 4%) ekt~

y-iw (A + 2)2

There is now a double pole (m = 2) at X = a = -2. According to
equation (C7)

which, when substituted

g(h) = (k + 2)’%(X)

into equation (c8),yields

1(x+2)2(A% + q + 4%) ekt

(k + 2)2 ?b=-2
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Example 3 (Triple yole).– Let

IVACATN 2002

There are triple poles at A = ia and at L =-is. If h = ia,
then equation (C7) gives

which, substituted into equation (c8), gives

()t t+~eiat
‘-~ a

Simi.ler3y,at 1.=-is

()R2=- t t--~e–iat
~

With the use of the relations
.

eix _ e-ix
sin x =

2i

eix+ e-ix
Cos x =

2

i
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then

47

x . ~(sin at -at cos at)
&3

.
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APPENDIX D

TRANSI?ORM3OF SlMULAT1112FUNCTIO~ FOR COKEROL-SURFACE MOTION

In order to include the control~urface deflection as a function
of time (or perameter Sc end f3b)in the equations of motions the

assumed motion nut be simulated (for simplicity) by some simple known
functions.

Some examples are given which could be satisfactory in many
practical cases. The functions are given here for five examples and
their transform are given in table II.

(1) Step function:

hf’
F.

‘L
o ~t

(h) Stra@t line:

.

.

(F= O;t <O)
(F= Fo; t>O)

(F=mt+b)

.

.



&
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(2)

1.
F.

o -t

(3)

—

T- -

—-— ___ _

F.

v

(4)

——_ . —.——

‘T

4

(F )
= Foe-t

@ = F.(1 - .+’))

(F= )Foe+t(l -e-bt)
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(F’= F. sin at)

(?=?9

T period

It is often convenient to get the result for unity of control-
surface deflection (SW one radian); then the result for any erbltr~
deflection can be readily computed.

.

.
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.

SIIYE’LIFIEDMEYL’EODS OF colmurATIoI

The computation of the the history ot any perameter can be
shortened in some cases if the form of the solution and also the
value of the function and ts first, second, and thtid derivatives
at a ~ven tim ere known.i It is preferable to find these bound~
conditions at thw t = O (initial values). On the assumption that
the inversion theorem for Laplace transformation gives a perameter y
in the fomu

1 J’
7+iw

Y
f(k)ektih=—

21ti
(El)

7–icu (k-i~)(i-k2)(~- L3)(~ -L4)X ”””

this method will be applied to the longitudinal and lateral motions.

Longitudinal motion.- The denominator (of the stability equation)
has five roots with one root A15= O. The other four roots me

frequently two conjugate complex pairs:

~1,2 =a*ip

A3,4 = 5 Liy

If equation (1) is assumed to giv? the solution in the form

Y =Co+ eat(Cl sinj3t+C2 cos j3t)+ efi(C3 sin~t +C4 cosM) . . .

then

gives

co = lim y can be eveluated. Differentiation
t-w

the derivatives ~, ~, and “~.

(E2)

of equation (E2)

If the initial values of these functiorm are known, that is, yo,

w $0sY’s @ “Yesat t = O the constants Cl, C2, C3, and C4 of

%he author is indebted for this suggestion to Mr. J. M. Debevoise.
.
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equation (E2) can be obtained by solving four simultaneous algebraic
equations which can be written (for t = O) as follows:

Yo=Cot C2+C4” S0

io=$c~+acp5c3+?c4 . . .

2apc~+ (a?- ~2)c2+ 2~3 +Yo = w - wc~ . . ●

‘y.= (W% - 133)c~+ (d - 3aj32)c2+ (37% - 53)C3

-1-(73- 3MC4 ● ● .

Thevalue of ‘f’ can also be obtained by plotting ~ agaimt t.

Y = eat{[ 1 [ 1}(a2 - ~2)C~ - 2c@C2 sin j3t+ Z!c@Cl+ (a2 - 132)C2cos ~t

{[ 1 [
+ e% (72 - G2)C3 - 278C~ sin bt + 2nC3 + (F - @c4]cos

Lateral motion.-
one root A5 = O, one

For the case of lateral
con~ugate complex yatr,

The time history of any parameter

Y =Co+

motion the equation
and two real roots

y can be written

+ C~ cos Pt-)-tefiC3 -1-85%4

(E3)

(E4)

(E5)

(E6)

}
M

has

(E7)

.

.
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and, as before, Co =

and~o for t=O

ply. The initial values of yo~ jos YOS

&e”&umd to be known. Differentiating

53

equation (E7)andsubstitutingfor t = O givefoursimultaneous
algebraicequationsfromwhichthe constantsCl,C2,C3, and C4
of equation(E2)canbe determined:

Yo =co+c2+c~+ c&.. (E8)

$o=Pcl+~2+M3+M 4... (E9)

y. = !2@c~+ (# - (E1O)132)C2+ 7%3 + 5%4 . , .

Y. = (3~2P- B%l + @ - 3@2)c2 + Y~3 + 53C4 ● ● ● (-)

If desired the value of “~ can be obtained by plotting ~ against
thle

Y = eat {[
(U2 - pa)cl -

[
*J sin Bt + 2aBCl + (a2 -

}
132)CJCos p-t

+ e~#C3 + e%+4

c

In the cases in which there are simple yoles, the ,methodpresented
in reference 7 canbe used. This method is illustrated briefly. It
has been seen that any perameter y of the equtioti of motion (such
as a, 0, V, ~, end so forth) expressed as a function of th6_
operator P can be written as a ratio of two determinants A(P)
and 3(P) which are polynomials in P

Thus the characteristic equation is

B(P) = o
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This equation Is a polynomial in P, the highest power of- P being q; .
thus it hae q roots: ~~s ~ps “ “ “ ~q” The inmrsion theorem gives

Bt =$@(P)

For multiple poles and special.cases, see reference 7 (pp. 152

to 169).
.

.

9
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. TABLE I

SIMPLW IAXTACE TRANSFORMS

.

.

.

J’
m

Transfom x(t) Z(P) = ‘Rx(t)dte
o

1 1 ~
P

2
t~l (1 a positive &

(n-l)! integer) Pn

3“ eat(P >Re(a))
1

P —a

4 sin at
@~a2

5 cos at P

P2 + a2

6 sinh at(P > tat)
a

p2 _a2

.

7 cos h at(P > [al)
*

8 t
z

sin at
(p2: a2)2

9 ~(sinat–at 00sat)
1

2a3
(P2+ a2)2

. .

r
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TABLE II

TRANSFORM OF SIMUIATIl12FUNCTICMS FOR CONTROIAURFACE MOTION

Transform for

Control-surface initial condition Tran6fom for

TyTe motion determining 50 =0 asmmpt ion

x(t)

J

m 3’ .=1

Y(P) = e‘Rx(t)dt ~P)
o

b

1 , Fe(t) step F~ ~
function P P

la mt+b (n+ l@/P2 For b = O, m/P2

2,
F. 1Feed%
P+a P+a

3 Fo(l - e-t)
Foa

P(P + a) P(P*+ a)

4
Fob

Foe+t (1 - e~t)
(P+-a)(P+a+b) (P + a)(Pb+ a + b)

Foa
5 F. sin at a

l%+a2 P2 + a2
.

.

.

.
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x

b

winddirection u>

59

K\\)
M

Horizontalaxis

Figure l.- Axes and notation used. Arrows indicate pcmitl~e directions
of moments, forces, and angular displacements.


